R / Rライブラリとの比較#

pandasは、人々がRで使用しているデータ操作と分析機能の多くを提供することを目指しているため、このページは、pandasとの関連で、R言語とその多くのサードパーティライブラリをより詳細に比較するために作成されました。RおよびCRANライブラリとの比較では、次の点を重視します。

  • 機能/柔軟性:各ツールで何ができて何ができないか

  • パフォーマンス:操作の速度。具体的な数値/ベンチマークが望ましい

  • 使いやすさ:一方のツールが使いやすいか/使いにくいか(並べてコードを比較することで判断する必要があるかもしれません)

このページは、これらのRパッケージのユーザーのための翻訳ガイドも提供しています。

クイックリファレンス#

dplyrを使用した一般的なR操作とpandasの同等の操作を組み合わせたクイックリファレンスガイドから始めます。

クエリ、フィルタリング、サンプリング#

R

pandas

dim(df)

df.shape

head(df)

df.head()

slice(df, 1:10)

df.iloc[:9]

filter(df, col1 == 1, col2 == 1)

df.query('col1 == 1 & col2 == 1')

df[df$col1 == 1 & df$col2 == 1,]

df[(df.col1 == 1) & (df.col2 == 1)]

select(df, col1, col2)

df[['col1', 'col2']]

select(df, col1:col3)

df.loc[:, 'col1':'col3']

select(df, -(col1:col3))

df.drop(cols_to_drop, axis=1) ただし、[1]を参照

distinct(select(df, col1))

df[['col1']].drop_duplicates()

distinct(select(df, col1, col2))

df[['col1', 'col2']].drop_duplicates()

sample_n(df, 10)

df.sample(n=10)

sample_frac(df, 0.01)

df.sample(frac=0.01)

ソート#

R

pandas

arrange(df, col1, col2)

df.sort_values(['col1', 'col2'])

arrange(df, desc(col1))

df.sort_values('col1', ascending=False)

変換#

R

pandas

select(df, col_one = col1)

df.rename(columns={'col1': 'col_one'})['col_one']

rename(df, col_one = col1)

df.rename(columns={'col1': 'col_one'})

mutate(df, c=a-b)

df.assign(c=df['a']-df['b'])

グループ化と集計#

R

pandas

summary(df)

df.describe()

gdf <- group_by(df, col1)

gdf = df.groupby('col1')

summarise(gdf, avg=mean(col1, na.rm=TRUE))

df.groupby('col1').agg({'col1': 'mean'})

summarise(gdf, total=sum(col1))

df.groupby('col1').sum()

基本R#

Rのcを使ったスライス#

Rでは、data.frameの列に名前で簡単にアクセスできます

df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]

または、整数による位置でアクセスできます

df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]

pandasでは、複数の列を名前で選択するのは簡単です

In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list("abc"))

In [2]: df[["a", "c"]]
Out[2]: 
          a         c
0  0.469112 -1.509059
1 -1.135632 -0.173215
2  0.119209 -0.861849
3 -2.104569  1.071804
4  0.721555 -1.039575
5  0.271860  0.567020
6  0.276232 -0.673690
7  0.113648  0.524988
8  0.404705 -1.715002
9 -1.039268 -1.157892

In [3]: df.loc[:, ["a", "c"]]
Out[3]: 
          a         c
0  0.469112 -1.509059
1 -1.135632 -0.173215
2  0.119209 -0.861849
3 -2.104569  1.071804
4  0.721555 -1.039575
5  0.271860  0.567020
6  0.276232 -0.673690
7  0.113648  0.524988
8  0.404705 -1.715002
9 -1.039268 -1.157892

複数の非連続の列を整数位置で選択するには、ilocインデクサー属性とnumpy.r_を組み合わせることで実現できます。

In [4]: named = list("abcdefg")

In [5]: n = 30

In [6]: columns = named + np.arange(len(named), n).tolist()

In [7]: df = pd.DataFrame(np.random.randn(n, n), columns=columns)

In [8]: df.iloc[:, np.r_[:10, 24:30]]
Out[8]: 
           a         b         c  ...        27        28        29
0  -1.344312  0.844885  1.075770  ...  0.813850  0.132003 -0.827317
1  -0.076467 -1.187678  1.130127  ...  0.149748 -0.732339  0.687738
2   0.176444  0.403310 -0.154951  ... -0.493662  0.600178  0.274230
3   0.132885 -0.023688  2.410179  ...  0.109121  1.126203 -0.977349
4   1.474071 -0.064034 -1.282782  ... -0.858447  0.306996 -0.028665
..       ...       ...       ...  ...       ...       ...       ...
25  1.492125 -0.068190  0.681456  ...  0.428572  0.880609  0.487645
26  0.725238  0.624607 -0.141185  ...  1.008500  1.424017  0.717110
27  1.262419  1.950057  0.301038  ...  1.007824  2.826008  1.458383
28 -1.585746 -0.899734  0.921494  ...  0.577223 -1.088417  0.326687
29 -0.986248  0.169729 -1.158091  ... -2.013086 -1.602549  0.333109

[30 rows x 16 columns]

aggregate#

Rでは、データをサブセットに分割し、それぞれについて平均値を計算したい場合があります。dfというdata.frameを使用して、by1by2のグループに分割します

df <- data.frame(
  v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
  v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
  by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
  by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)

groupby()メソッドは、基本Rのaggregate関数に似ています。

In [9]: df = pd.DataFrame(
   ...:     {
   ...:         "v1": [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
   ...:         "v2": [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
   ...:         "by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12],
   ...:         "by2": [
   ...:             "wet",
   ...:             "dry",
   ...:             99,
   ...:             95,
   ...:             np.nan,
   ...:             "damp",
   ...:             95,
   ...:             99,
   ...:             "red",
   ...:             99,
   ...:             np.nan,
   ...:             np.nan,
   ...:         ],
   ...:     }
   ...: )
   ...: 

In [10]: g = df.groupby(["by1", "by2"])

In [11]: g[["v1", "v2"]].mean()
Out[11]: 
            v1    v2
by1  by2            
1    95    5.0  55.0
     99    5.0  55.0
2    95    7.0  77.0
     99    NaN   NaN
big  damp  3.0  33.0
blue dry   3.0  33.0
red  red   4.0  44.0
     wet   1.0  11.0

詳細と例については、groupbyのドキュメントを参照してください。

match / %in%#

Rでデータを選択する一般的な方法は、match関数を使用して定義された%in%を使用することです。%in%演算子は、一致があるかどうかを示す論理ベクトルを返すために使用されます

s <- 0:4
s %in% c(2,4)

isin()メソッドは、Rの%in%演算子に似ています

In [12]: s = pd.Series(np.arange(5), dtype=np.float32)

In [13]: s.isin([2, 4])
Out[13]: 
0    False
1    False
2     True
3    False
4     True
dtype: bool

match関数は、最初の引数が2番目の引数に一致する位置のベクトルを返します

s <- 0:4
match(s, c(2,4))

詳細と例については、reshapingのドキュメントを参照してください。

tapply#

tapplyaggregateに似ていますが、サブクラスのサイズが不規則である可能性があるため、データは不規則な配列にすることができます。baseballというdata.frameを使用し、配列teamに基づいて情報を取得します

baseball <-
  data.frame(team = gl(5, 5,
             labels = paste("Team", LETTERS[1:5])),
             player = sample(letters, 25),
             batting.average = runif(25, .200, .400))

tapply(baseball$batting.average, baseball.example$team,
       max)

pandasでは、pivot_table()メソッドを使用してこれを処理できます

In [14]: import random

In [15]: import string

In [16]: baseball = pd.DataFrame(
   ....:     {
   ....:         "team": ["team %d" % (x + 1) for x in range(5)] * 5,
   ....:         "player": random.sample(list(string.ascii_lowercase), 25),
   ....:         "batting avg": np.random.uniform(0.200, 0.400, 25),
   ....:     }
   ....: )
   ....: 

In [17]: baseball.pivot_table(values="batting avg", columns="team", aggfunc="max")
Out[17]: 
team           team 1    team 2    team 3    team 4    team 5
batting avg  0.352134  0.295327  0.397191  0.394457  0.396194

詳細と例については、reshapingのドキュメントを参照してください。

subset#

query()メソッドは、基本Rのsubset関数に似ています。Rでは、ある列の値が別の列の値よりも小さいdata.frameの行を取得したい場合があります

df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
df[df$a <= df$b,]  # note the comma

pandasでは、サブセットを実行する方法はいくつかあります。query()を使用するか、式をインデックス/スライスであるかのように渡すことができます。また、標準のブールインデクシングも使用できます

In [18]: df = pd.DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})

In [19]: df.query("a <= b")
Out[19]: 
          a         b
1  0.174950  0.552887
2 -0.023167  0.148084
3 -0.495291 -0.300218
4 -0.860736  0.197378
5 -1.134146  1.720780
7 -0.290098  0.083515
8  0.238636  0.946550

In [20]: df[df["a"] <= df["b"]]
Out[20]: 
          a         b
1  0.174950  0.552887
2 -0.023167  0.148084
3 -0.495291 -0.300218
4 -0.860736  0.197378
5 -1.134146  1.720780
7 -0.290098  0.083515
8  0.238636  0.946550

In [21]: df.loc[df["a"] <= df["b"]]
Out[21]: 
          a         b
1  0.174950  0.552887
2 -0.023167  0.148084
3 -0.495291 -0.300218
4 -0.860736  0.197378
5 -1.134146  1.720780
7 -0.290098  0.083515
8  0.238636  0.946550

詳細と例については、queryのドキュメントを参照してください。

with#

Rでa列とb列を持つdfというdata.frameを使用する式は、withを使用して次のように評価されます

df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
df$a + df$b  # same as the previous expression

pandasでは、eval()メソッドを使用する同等の式は次のようになります

In [22]: df = pd.DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})

In [23]: df.eval("a + b")
Out[23]: 
0   -0.091430
1   -2.483890
2   -0.252728
3   -0.626444
4   -0.261740
5    2.149503
6   -0.332214
7    0.799331
8   -2.377245
9    2.104677
dtype: float64

In [24]: df["a"] + df["b"]  # same as the previous expression
Out[24]: 
0   -0.091430
1   -2.483890
2   -0.252728
3   -0.626444
4   -0.261740
5    2.149503
6   -0.332214
7    0.799331
8   -2.377245
9    2.104677
dtype: float64

場合によっては、eval()は純粋なPythonでの評価よりもはるかに高速になります。詳細と例については、evalのドキュメントを参照してください。

plyr#

plyr は、データ分析のための分割-適用-結合戦略を実現するRライブラリです。関数は、Rの3つのデータ構造、aarrays:配列)、llists:リスト)、ddata.frame:データフレーム)を中心に展開します。以下の表は、これらのデータ構造がPythonでどのように対応付けられるかを示しています。

R

Python

配列

リスト

リスト

辞書またはオブジェクトのリスト

data.frame

データフレーム

ddply#

Rにおいて、dfというデータフレームを使用して、month(月)ごとにxを要約したい場合の式

require(plyr)
df <- data.frame(
  x = runif(120, 1, 168),
  y = runif(120, 7, 334),
  z = runif(120, 1.7, 20.7),
  month = rep(c(5,6,7,8),30),
  week = sample(1:4, 120, TRUE)
)

ddply(df, .(month, week), summarize,
      mean = round(mean(x), 2),
      sd = round(sd(x), 2))

pandasでは、groupby()メソッドを使用する同等の式は次のようになります。

In [25]: df = pd.DataFrame(
   ....:     {
   ....:         "x": np.random.uniform(1.0, 168.0, 120),
   ....:         "y": np.random.uniform(7.0, 334.0, 120),
   ....:         "z": np.random.uniform(1.7, 20.7, 120),
   ....:         "month": [5, 6, 7, 8] * 30,
   ....:         "week": np.random.randint(1, 4, 120),
   ....:     }
   ....: )
   ....: 

In [26]: grouped = df.groupby(["month", "week"])

In [27]: grouped["x"].agg(["mean", "std"])
Out[27]: 
                  mean        std
month week                       
5     1      63.653367  40.601965
      2      78.126605  53.342400
      3      92.091886  57.630110
6     1      81.747070  54.339218
      2      70.971205  54.687287
      3     100.968344  54.010081
7     1      61.576332  38.844274
      2      61.733510  48.209013
      3      71.688795  37.595638
8     1      62.741922  34.618153
      2      91.774627  49.790202
      3      73.936856  60.773900

詳細と例については、groupbyのドキュメントを参照してください。

reshape / reshape2#

meltarray#

Rにおいて、aという3次元配列をデータフレームに変換したい場合の式

a <- array(c(1:23, NA), c(2,3,4))
data.frame(melt(a))

Pythonでは、aはリストなので、リスト内包表記を使用するだけで済みます。

In [28]: a = np.array(list(range(1, 24)) + [np.NAN]).reshape(2, 3, 4)

In [29]: pd.DataFrame([tuple(list(x) + [val]) for x, val in np.ndenumerate(a)])
Out[29]: 
    0  1  2     3
0   0  0  0   1.0
1   0  0  1   2.0
2   0  0  2   3.0
3   0  0  3   4.0
4   0  1  0   5.0
.. .. .. ..   ...
19  1  1  3  20.0
20  1  2  0  21.0
21  1  2  1  22.0
22  1  2  2  23.0
23  1  2  3   NaN

[24 rows x 4 columns]

meltlist#

Rにおいて、aというリストをデータフレームに変換したい場合の式

a <- as.list(c(1:4, NA))
data.frame(melt(a))

Pythonでは、このリストはタプルのリストになるので、DataFrame()メソッドを使用して、必要に応じてデータフレームに変換します。

In [30]: a = list(enumerate(list(range(1, 5)) + [np.NAN]))

In [31]: pd.DataFrame(a)
Out[31]: 
   0    1
0  0  1.0
1  1  2.0
2  2  3.0
3  3  4.0
4  4  NaN

詳細と例については、データ構造入門のドキュメントを参照してください。

meltdf#

Rにおいて、cheeseというデータフレームの形状を変更したい場合の式

cheese <- data.frame(
  first = c('John', 'Mary'),
  last = c('Doe', 'Bo'),
  height = c(5.5, 6.0),
  weight = c(130, 150)
)
melt(cheese, id=c("first", "last"))

Pythonでは、melt()メソッドがRの同等の機能です。

In [32]: cheese = pd.DataFrame(
   ....:     {
   ....:         "first": ["John", "Mary"],
   ....:         "last": ["Doe", "Bo"],
   ....:         "height": [5.5, 6.0],
   ....:         "weight": [130, 150],
   ....:     }
   ....: )
   ....: 

In [33]: pd.melt(cheese, id_vars=["first", "last"])
Out[33]: 
  first last variable  value
0  John  Doe   height    5.5
1  Mary   Bo   height    6.0
2  John  Doe   weight  130.0
3  Mary   Bo   weight  150.0

In [34]: cheese.set_index(["first", "last"]).stack(future_stack=True)  # alternative way
Out[34]: 
first  last        
John   Doe   height      5.5
             weight    130.0
Mary   Bo    height      6.0
             weight    150.0
dtype: float64

詳細と例については、形状変更のドキュメントを参照してください。

cast#

Rでは、acastは、dfというデータフレームを使用して、より高次元の配列にキャストする式です。

df <- data.frame(
  x = runif(12, 1, 168),
  y = runif(12, 7, 334),
  z = runif(12, 1.7, 20.7),
  month = rep(c(5,6,7),4),
  week = rep(c(1,2), 6)
)

mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)

Pythonでは、pivot_table()を使用するのが最適です。

In [35]: df = pd.DataFrame(
   ....:     {
   ....:         "x": np.random.uniform(1.0, 168.0, 12),
   ....:         "y": np.random.uniform(7.0, 334.0, 12),
   ....:         "z": np.random.uniform(1.7, 20.7, 12),
   ....:         "month": [5, 6, 7] * 4,
   ....:         "week": [1, 2] * 6,
   ....:     }
   ....: )
   ....: 

In [36]: mdf = pd.melt(df, id_vars=["month", "week"])

In [37]: pd.pivot_table(
   ....:     mdf,
   ....:     values="value",
   ....:     index=["variable", "week"],
   ....:     columns=["month"],
   ....:     aggfunc="mean",
   ....: )
   ....: 
Out[37]: 
month                  5           6           7
variable week                                   
x        1     93.888747   98.762034   55.219673
         2     94.391427   38.112932   83.942781
y        1     94.306912  279.454811  227.840449
         2     87.392662  193.028166  173.899260
z        1     11.016009   10.079307   16.170549
         2      8.476111   17.638509   19.003494

同様に、Rでdfというデータフレームを使用して、AnimalFeedTypeに基づいて情報を集計するdcastについても同様です。

df <- data.frame(
  Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
             'Animal2', 'Animal3'),
  FeedType = c('A', 'B', 'A', 'A', 'B', 'B', 'A'),
  Amount = c(10, 7, 4, 2, 5, 6, 2)
)

dcast(df, Animal ~ FeedType, sum, fill=NaN)
# Alternative method using base R
with(df, tapply(Amount, list(Animal, FeedType), sum))

Pythonでは、これに対して2つの異なるアプローチがあります。1つ目は、上記と同様にpivot_table()を使用する方法です。

In [38]: df = pd.DataFrame(
   ....:     {
   ....:         "Animal": [
   ....:             "Animal1",
   ....:             "Animal2",
   ....:             "Animal3",
   ....:             "Animal2",
   ....:             "Animal1",
   ....:             "Animal2",
   ....:             "Animal3",
   ....:         ],
   ....:         "FeedType": ["A", "B", "A", "A", "B", "B", "A"],
   ....:         "Amount": [10, 7, 4, 2, 5, 6, 2],
   ....:     }
   ....: )
   ....: 

In [39]: df.pivot_table(values="Amount", index="Animal", columns="FeedType", aggfunc="sum")
Out[39]: 
FeedType     A     B
Animal              
Animal1   10.0   5.0
Animal2    2.0  13.0
Animal3    6.0   NaN

2つ目のアプローチは、groupby()メソッドを使用する方法です。

In [40]: df.groupby(["Animal", "FeedType"])["Amount"].sum()
Out[40]: 
Animal   FeedType
Animal1  A           10
         B            5
Animal2  A            2
         B           13
Animal3  A            6
Name: Amount, dtype: int64

詳細と例については、形状変更のドキュメントまたはgroupbyのドキュメントを参照してください。

factor#

pandasには、カテゴリデータ用のデータ型があります。

cut(c(1,2,3,4,5,6), 3)
factor(c(1,2,3,2,2,3))

pandasでは、これはpd.cutastype("category")を使用して実現します。

In [41]: pd.cut(pd.Series([1, 2, 3, 4, 5, 6]), 3)
Out[41]: 
0    (0.995, 2.667]
1    (0.995, 2.667]
2    (2.667, 4.333]
3    (2.667, 4.333]
4      (4.333, 6.0]
5      (4.333, 6.0]
dtype: category
Categories (3, interval[float64, right]): [(0.995, 2.667] < (2.667, 4.333] < (4.333, 6.0]]

In [42]: pd.Series([1, 2, 3, 2, 2, 3]).astype("category")
Out[42]: 
0    1
1    2
2    3
3    2
4    2
5    3
dtype: category
Categories (3, int64): [1, 2, 3]

詳細と例については、カテゴリデータ入門APIドキュメントを参照してください。Rのfactorとの違いに関するドキュメントもあります。